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CALCULUS OF VARIATIONS
VIA THE GRIFFITHS FORMALISM

LUCAS HSU

Abstract

For general variational problems with one independent variable, we dis-
cuss Griffiths’ construction of the Euler-Lagrange system on an affine sub-
bundle of T*A where M is the phase space of the variational problem.
‘We show that, subject to some regularity assumptions, the Griffiths crite-
rion gives necessary and sufficient conditions for the associated functional
to be stationary.

Introduction

In the calculus of variations, it is of fundamental importance to find
the extremals of a given functional

¢(y)=/y¢,~

where y is a curve in M, the phase space of the variational problem,
and ¢ is a one-form on M . Some well-known examples of variational
problems include the action functional associated with mechanical systems
and the arclength functional. :

In this paper, we study variational problems arising from functionals
whose domain of definition consists of integral.curves of an exterior dif-
ferential system. In [17], based on the pioneering work of Cartan [11],
Griffiths gave a construction of the Euler-Lagrange system for such func-
tionals and showed how to extend the rich geometric structures that are
familiar in the case of classical mechanics to this general setting.

Griffiths’ book contains a wealth of examples from mechanics and ge-
ometry which indicate the scope of applications of this generalization of
the classical variational problem. However, the Euler-Lagrange system de-
rived by Griffiths was arrived at only by heuristic reasoning. In particular,
the fundamental unsolved problem, which we shall refer to as the Griffiths
Problem, is whether or not, in general, the Euler-Lagrange system gives
necessary as well as sufficient conditions for stationary values of &®.
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The sufficiency of the Griffiths criterion was first established by Bryant
[4, Proposition 3, p. 69], while the necessity of the criterion constitutes
the main result of this paper. The key ingredient in the resolution of
the Griffiths Problem is the notion of regularity of integral curves of a
differential system 7. Intuitively, an integral curve of I is said to be
regular if it admits “enough” compactly supported variations as integrals
of I. As will be shown in the following, for bracket generating differential
systems (that is, systems whose derived flag terminates at (0)), the generic
integral curve is regular.

The main result of this paper states that regular extremals of ® are
necessarily integrals of the Euler-Lagrange system obtained via the Grif-
fiths formalism. This result is sharp in the sense that nonregular extremals
exist which do not satisfy the corresponding Euler-Lagrange system. An
explicit example of such a variational problem is constructed in §2. The ex-
istence of nonregular extremals has important consequences in the study of
geodesics in sub-Riemannian geometry. In particular, they provide coun-
terexamples to the often-stated assertion that “minimizing paths in sub-
Riemannian manifolds satisfy the geodesic equations” (see, for instance,
[22)). "

The paper is organized as follows. In §1 the setup of the general varia-
tional problem and its corresponding Euler-Lagrange system are presented.
§2 deals with the variational equations of integral curves of a differential
system and the concept of regularity for such curves. The proof of the
main result, the necessity of the Griffiths criterion, is then presented in
§3 while in §4, we apply the Griffiths formalism to investigate a number
of geometrically interesting variational problems. There are three appen-
dices. The first is concerned with the calculus: of variations for closed
curves. In the second appendix, we give a construction of the holonomy
map associated with integral curves of an exterior differential system. The
third appendix deals with a generalization of the well-known lemma of
du Bois-Reymond which is needed in the proof of the main result.

At this time, we would like to emphasize that although the subject mat-
ter of this paper is intimately related to the much-studied classical problem
of Lagrange in the calculus of variations, the approach taken here is fun-
damentally different from that of classical papers in this area (see, for in-
stance, [3] and references therein) and, being coordinate free, is decisively
more geometric. Qur guiding philosophy is that the theory of exterior
differential systems [7], coupled with the method of moving frames [12],
constitutes a computationally effective and theoretically natural setting for
studying variational problems arising from geometry. This philosophy, in-
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troduced in Griffiths® book Exterior differential systems and the calculus of
variations is perhaps not as widely appreciated as it should be, especially
as regards the study of geometrically constrained variational problems.
Our purpose here is to present a somewhat updated and hopefully clear
exposition of a portion of the Griffiths philosophy, together with some
applications to geometry.

1. The géneral variational problem

Let I ¢ T°M be a rank-p subbundle on a smooth m-dimensional
manifold A, and let ¢ € o! (M) be aone-form on M . In this paper we
shall restrict our consideration to smooth integral curves of /. Hence we
fix an interval (a, b) C R and consider the space of smooth immersions

7'(I)={y:(a,b)—~ M|y (I)=0},

which are integral curves of /. We shall use the Whitney C*-topology
whenever we need a topology on 27 (I). Furthermore, we shall identify
integral curves y which differ only by reparametrization. Thus, if s :
(a, b) — (a, b) is a smooth orientation-preserving diffeomorphism, then
we identify yos with .

By a variational problem, henceforth denoted by the triple (M, I, ¢),
we shall mean the study of the functional

®:7(I)— R

given by
1.1 o) = [ ¢,
(L1) ) / 6

where y is a typical integral curve of the differential system I on M.
With the C™-topology on Z°(I), the functional @ is everywhere smooth
in its domain of definition.

It is important to note that this variational problem is a proper general-
ization of the classical variational problem where one studies a functional
Z on the space of smooth maps x : (a, b) » R" defined by

(1.2) Z(x) = / bL(t, x(t), X' (1), -, x¥(e))dt,

and L (the Lagrangian) is a smooth real-valued function on (a, b) x
R**D" | 1dentifying (a, b) x R*™D" with J*((a, b), R"), it is easy to
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show -that this classical variational problem is equlvalent to study1ng the
functional :
20 = [,
h g Y

where y : (a, b) — J*((a, b), R") is an integral curve of the canoni-
cal contact system on J k((a, b), R"), and ¢ = Ldt is the standard La-
grangian one-form on J k((a b), R"). Examples of “nonclassical” varia-
tional problems can be found in Bryant (4] and anﬁths [17], and also in
§4 of this paper.

‘The basic problem in the calculus of variations is to describe the crit-
ical points of the functional @, that is, to determine the Euler—Lagrange
equations of @ . This can be described as follows:

Let T W(I ) -denote the “tangent space” (see §2 for a precise deﬁnmon)
to W(I) at y and consider the differential of the functional (1.1) as a
map

s®(y): T,7(I) - R
given by

SO (v) = o ( / ¢)
Y s=0

where y, € Z'(I) is any compactly supported variation of y with y, =y
and v is the associated infinitesimal variation defined along y correspond-
ing to the deformation s — y . Here, by “compactly supported variation
of y” we mean as usual a one-parameter family of smooth immersions
Y, :(a, b) = M with y, =y defined by

70 =T, s)

for a smooth map I': (a, b) x (—¢, ¢) — M which, outside of a compact
set K C (a, b), satisfies .

I',sy=0C(,0) Vte(a,b)\K,

or equivalently
y,()=7v() Vie(a, b)\K

The associated compactly supported infinitesimal variation v = l;(t , 0)
is called a variational vector field.
In terms of these, the Euler-Lagrange equations are the conditions that

(1.3) D)) =0 VveT,Z().

Integral curves y satisfying this equation are called extremals of ®.
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‘Remark. - In the classical approach to the calculus of variations, instead
of compactly supported variations, it is usually assumed that variations
have fixed endpoints. Of course, since the class of compact variations is
a proper subset of fixed endpoints variations, all stationary points of ®
under fixed endpoints variations are necessarily stationary points: under
compact variations. However, the converse is not always true.

For geometric problems, it is natural to study stationary points un-
der compact variations since, being geometric, the variational problem
(M, I, ¢) should be independent of the prolongation class of the system
1.

We now proceed to consider the instructive spemal case where I={0}.
In this case, the extremal problem is easily solved:

Proposition 1. If y:(a, b) — M is an extremal of the functional

o= [o
7
when one considers compactly supported variations, then for all t € (a, b),
(1.4) v_ld¢>ly([)

where v € C*°(T M) is any compactly supported vector field along y. Con-

versely, if y satisfies this condition, then y : (a, b) — M is an extremal.
Proof. let I':(a, b) x (—€, &) — M be an arbitrary compactly sup-

ported variation of y and let y (f) = I'(¢, s) for |s| < &. A straightforward

computation gives
d (. o
E(/ysqs) _/a vide,

where v = %E(t , 0) 1s the variational vector field associated with I'(z, s).
Since I' is an arbitrary compactly supported variation and v can be any
compactly supported vector field along y, we see that Proposition 1 fol-
lows.

Remark. Proposition 1 above allows us to associate to a variational
problem (M, {0}, ¢) a Pfaffian system I on M . From (1.4), this system
is simply the Cartan system of the two-form d¢ on M :

F(d¢) = {vido|veC(TM)},
where C0°° (T M) denotes the space of smooth compactly supported vector
fields on M . Thus extremals of (M, {0}, ¢) are characteristic curves of
the two-form d¢ on M . Following Griffiths, we shall call the differential
system I on M generated by %(d¢) the Euler-Lagrange system of the
variational problem (M, {0}, ¢).

5s=0
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In the case rank(/) > 0, Bryant [4, Proposition 3] and Griffiths [17, pp.
77-83] generalized the above proposition, giving a simple construction of
extremals of an arbitrary variational problem. Let us proceed to give a
brief outline of this construction.

To each variational problem (M, I, ¢), we associate the affine sub-
bundle Z = I + ¢ of the cotangent bundle 7°M . This means that for
each x € M, weview Z =1 + ¢, asan affine subspace of T; M . Note
that Z determines I since for each x € M, I is the vector subspace of
T; M parallel to Z, . However Z only determines ¢ modulo I since
I+¢=1I+¢+n ifand only if n € C(I). Now recall that on T"M ,
there is a canonical one-form ¢ defined by a(v) = &(x,(v)) for £ € T" M,
where v € Té(T* M) and n: T"M — M is the canonical projection [23].
We denote the restriction of ¢ to the affine sub-bundle Z by (.

Locally Z can be identified with an (m + p)-dimensional product man-
ifold Z, = U x R’ for an open set U C M . This is given by identifying
the pair (x, A) € U x R with the one-form

¢, +210, € T/ M.

Here we view A = (1, --- , 4,) as a row-vector and § = “e', -, 0
as a column-vector, where {6”} is a basis for the sections of I over U.
Under this identification, the canonical one-form { on Z takes the form
{=0+208.

At this point, we note that each variational problem (M, I, ¢) deter-
mines a canonical associated variational problem (Z , {0}, {). The impor-
tance of (Z, {0}, {) for the variational problem (M, I, ¢) comes from
the following well-known result (see Bryant [4]).

Theorem 2. Let (M, I, ¢) be a smooth variational problem and let
(Z, {0}, &) be the associated variational problem. Then the projection
w:Z — M maps extremals of (Z , {0}, {) to extremals of (M, I, ¢).

Proof. Let ¥ :(a,b) — Z be a smooth map and suppose that 7 is
an extremal of (Z,{0},{). Let y =mo %, where # : Z — M is the
projection map. By construction,

d{=dod+dAn0O+2d6.

Contracting d{ with vertical vectors 8/dA on Z , we see that y(¢) is an
integral curve of I on M.

Now suppose that I': (a, b) x (—¢, €) — M is a compactly supported
variation of y through integrals of I. Let I: (a,b)yx(-€,e) > Z be
any lifting of I' with T(r, 0) = 7(1). For each (¢, s) € (a, b) x (~¢, &),

the definition of Z implies that T'(¢, s) —_¢|F(175) el lr( L) Since, for each



CALCULUS OF VARIATIONS VIA THE GRIFFITHS FORMALISM - 557

fixed s, y(t) =T(¢, s) is an integral of I, we have

I(t, $)[7.(0)] = Sy ()]

By the definition of {, we have that { [}"J;(t)] = f(t, s)[y;(t)] , so for each
s, we must have [ : 5.0 = [ ab y:(¢). Since J, = ¥ is an extremal of
(Z, {0}, ), it follows that y = mo % is an extremal of (M, I, ¢).

Remarks. 1. Associated with a variational problem (M, I, ¢) is the
Euler-Lagrange system I on Z obtained by applying Proposition 1 to the
corresponding variational problem (Z, {0}, {). By the preceding theo-
rem, integral curves of this system give rise to extremals of (M, I, ¢).

In most applications however, one is interested in finding extremals of
the variational problem satisfying some transversality conditions. This
naturally arises when the basic differential system / admits an indepen-
dence condition, say @, a one-form on M . Integrals of (I, w) are in-
tegrals y € Z°(I) satisfying y"w # 0. The corresponding Euler-Lagrange
system, generated by the involutive prolongation of the Cartan system
(Z(d(), @) on Z, is a Pfaffian system (I, @) on the associated mo-
mentum space McZ (see Griffiths [17, pp. 78-83] for the details of this
construction). Here @ and & are respectively one-forms on Z and M
obtained by pulling back @ on M.

2. In the classical literature on the calculus of variations, attention is
focused almost exclusively on what is called the Lagrange problem [3].
In our language, this corresponds to taking the differential system I to
be the restriction of the canonical contact system on J 1(R, R") and ¢
to be the restriction of the standard Lagrangian one-form on J'(R, R")
to a submanifold M of J 1(R, R™). This is of course a special case of
the general variational problem studied in this paper. Applying the above
construction, one easily recovers the classical Euler-Lagrange equations
obtained via the Lagrange multiplier rule.

3. The one-form { on Z plays the role of a generalized Cartan form
in the sense that the projection of the characteristic curves of df to M
are extremals of the variational problem. In the classical case (1.2), { is
precisely the Cartan form which yields much essential information about
the variational problem [11]. In particular, { occurs as the integrand of
the Hilbert invariant integral which plays a crucial role in the proofs of
various sufficiency theorems [18].

Theorem 2 above allows us to find extremals of (M, I, ¢) by integrat-
ing the corresponding Euler-Lagrange system 1. However, we have not
shown that all the extremals of (M, I, ¢) arise this way for a general
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variational problem. Thus we are naturally led to the following,

Griffiths Problem. Does every extremal of a variational problem
(M, 1, ) arise from the projection of an extremal of (Z , {0}, {)?

Clearly, every extremal y of (M, I, ¢), being an integral of I, has a
lifting to a curve $ C Z . The fundamental question is: Does there exist
a lifting ¥ which is an integral curve of the Euler-Lagrange system T on
zZ?

In the following sections, we shall attempt a resolution of this problem.
We shall show that, subject to some regularity conditions on. 7°(I) , every
extremal of a variational problem (M, I, ¢) arises from the projection of
an integral curve of the associated Euler-Lagrange system I on Z. In ac-
tual examples (see; for instance, §4), these regularity conditions are either
identically satisfied or correspond to some natural geometric conditions on
the class of integral curves of the differential system 7. We begin with the
following simple observation.

Let » be an integral curve of I which admits a compactly supported
variation, denoted by I' : (a, b) x (—¢,¢) —» M, and let y (¢) = I(¢, s)
for |s| < &. As before, a straightforward computation gives

(), = e

where v is the variational vector field associated with I'(¢, s). Hence, the
condition that the integral curve y: (a, b)) — M be an extremal is that

(1.5) /bv_ld¢=0

for all variational vector fields of y € Z°(I). However, except for the case
I = {0}, very little is known about the space of variational vector fields
of an integral curve y. Thus, as a first step towards solving the Griffiths
Problem, we proceed in the following section to undertake a detailed study
of these vector fields.

2. Regularity and the variational equations

The difficulty in deriving the correct Euler-Lagrange equations from
the integral relation (1.5) is that only certain transverse vector fields to
y C M represent infinitesimal variations of y as an integral curve of 7.
In particular, there may be no such compactly supported variational vector
fields along y. In this section, we shall present a regularity criterion under
which we can establish the existence of such variational vector fields.
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We begin with the derivation of the variational equations for an integral
curve y of I. These equations may be viewed geometrically as describing
“to first order” the quantity T,7°(I), the space of smooth variational
vector fields of y. We shall show that for the subset of regular integral
curves (to be defined below) Z(I) ¢ 7°(1), T %(1 ) coincides exactly
with the null space of the varzatzonal operator .

A map T (—¢, &) — Z'(I) is said to be a smooth compactly supported
variation of y as an integral curve of I if the map

I':(a,b)x(~¢,e) > M

defined by I'(¢,s) = (s)(t) is smooth, compactly supported in (a, b),
and such that if we let

v, :(a, )= M, s€(-¢,¢€),

be the restriction of T" to (a, b) x {s} = (a, ), then y, =y and y:(l) =
0. Here, “compactly supported in (a, ) means that I'(z, s) coincides
with I'(z, 0) outside of a compact subset of (a, b). In terms of these, the
space of variational vector fields can be described as

r7(I) = {ar(t 0) | I: (—e, €) — Z°(I) is a compact variation of y}

As the notation suggests, for 77(I) a differentiable manifold in a neigh-
borhood of the integral curve y, T,77(I ) is the tangent space to Z°(I) at
Y. : :

Although intuitive, the above description is highly unsatisfactory since a
direct computation of Ty%(l ) requires a detailed knowledge of the space
of solutions of the differential system 7. What is needed is a description
of T y%(l ) which depends only on the system 7.

In {17, p. 44], Griffiths derived the variational equations for an arbi-
trary integral curve y of a differential systém I. We'proceed to give a
construction of these equations.

We associate to a rank p differential system 7 on M
distribution given by

"*F a “horizontal”
I"={veTM|viI=0}

Furthermore, on each integral curve y : (a, b)) — M of the system I,
there are naturally defined vector bundles which we denote by

T,=y(TM), I =y (TM/I).
Geometrically, T, is the space of smooth tangent vector fields to M de-
fined along y, while I;‘ can be thought of as the associated “vertical”
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bundle. Clearly Ty and I; are respectively rank n+p and rank p vector
bundles over y. Associated with these vector bundles are mappings

1 n
0—>Iy —I>Ty—¥>1‘;——>0,
where [ denotes the inclusion map into Ty while 7, is the projection to
I; . Note that there is no canonical splitting of this sequence.

In what follows, we find it convenient to make a choice of splitting
s I; - T " satisfying 7, o s = 1 (the identity map on Iy* ), in which case

~ 7L *
T, =I EBS(IY).
This then enables us to introduce the projection operator
1
T, : T/ — Iy
which depends on the splitting s .

In terms of the above, Griffiths [17] deduced that the variational equa-
tions of y € Z°(I) take the form

(2.1) P,(v) =0,
where 9, : C*(T,) — QI(I; ) is a linear differential operator defined by
(2.2) D (v)=e,® (v1d6° +d(v167))],.
Here {6°} is a local coframe field of I on I/, an open subset of M
containing y, while {e_} is a frame field of I;‘ dual to {6°} along y.

Hence, with respect to a fixed frame field, the variational equations (2.1)
are

(2.3) (vide® +d(v_|6°'))|y =0.

These variational equations are of course canonically associated with
each integral curve of 7. In fact, given a differential system I on M,
there is a differential system I on TM with the property that all integral
curves 7 : (a, b) - TM of I" which are transverse to the fibers of the
projection @ : TM — M are solutions of the variational equations of
y=n(p) € Z(I). The system I " is constructed as follows:

Let I C Q" (M) be a differential system on M, and let I' c Q*(TM)
be the system on T'M generated by n* (1) Unh(l) . Here #n*(I) means the
pullback of the system I to TM while 7" : o* (M) — oF (TM) denotes
the operator

nb=do7zb+7zbod,
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where 7 : Qk(M) - Qk_l(TM) is defined to be
2(0)(v) = 7' [v 101,01

for any vector v on M.

By construction, an integral curve # of I"on TM projects down to

M to be an integral curve y of I, and in addition satisfies

5 7 = 0.
As can readily be checked, this last equation is equivalent to (2.3). Hence-
forth, we shall call 1 " the variational system associated with 7.

The importance of the variational equations arises from the fact that
they allow us to obtain an almost explicit description of TyW(I ). Geomet-
rically, solutions of these equations are the possible infinitesimal variations
of y as an integral curve of 7. In particular, kergy contains the set of
variational vector fields of y. We now proceed to show that, subject to a
maximal rank condition, every compactly supported solution v € kergy
of the variational equation is a variational vector field of the integral curve
y associated to an actual variation y € 7°(I). ‘

To accomplish this, we need a more explicit description of the varia-
tional equations of y € Z°(I). Let U be an open subset of M and let
y: (a, b) = U be an integral curve of I. Choose a coframing {6°, '}
of U so that I is generated by {#°} on U. We then have the structure
equations

(2.4) d9” = —¢5 A 6% + %cj'knj At
where c}’k + c,':j = 0. Note that these equations uniquely determine the
one-forms qﬁ; mod .

This choice of coframing induces a splitting T, = IyL ® s(I; ) along y
whereby IyL and I; are spanned by {¢;} and {e }, dual frame fields
to {#'} and {6°}. With respect to this splitting, v € C™(7,) can be
expressed as _

v=ew +s(e)u’,
or equivalently
v=ew+s(e)u,

where u = (4°) € C®((a, b), R’) and w = (w') € C>((a, b), R") are
smooth vector-valued functions, while e, = (¢;) and e, = (e,) are re-
garded as row-vectors. If v € C™(T. y) i1s a variational vector field, then

n,(v) =ew e C¥ (Iyl ) manifests itself as the infinitesimal horizontal
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variation, while z_ (v) =e u € C °°(I; ) generates the corresponding verti-
cal variation.
Now, let v:(a, b) — U be an integral curve of I. Clearly, we have

y*ea - O, y*’]l — ni(l)dt, '})*¢(; = f(;(l)dl, y*C}Xk = C]ak(l) 5

for some smooth functions #'(¢), f3(®), and 5 (¢) on (a,b), and a
parametrization ¢t of y. To simplify notation, we let

n=(n'), f=(p, c=(c),

where ¢ = c;?‘inj . In terms of these, the variational operator (2.2) of y
takes the form ' a ‘ '

Z,(v) = e, ®@[du+ (fu—cw)dt],
in which case the correspdnding variational equations are -
' a4+ fu=cw,

where ~ denotes the derivative with respect to the parameter ¢.
We seek to describe compactly supported solutions of these variational
equations. Hence, we construct a mapping
oo, yl
J, 1 Co (L) —kerZ,

whereby 0 =e w € c® (IyL ), a section of .C °°(IYL ). with compact support
in (a, b), determines & = e u_, a section of C> (Iy* ), by the requirement
that u_ satisfies the variational equation
(2.5a) u, + fu, =cw
with initial condition '
(2.5b) u,(a)=0.
Note that thisis an under-determined system of first-order linear ordinary
differential equations for u_. Solutions to these variational equations
always exist and depend on the R"-valued function w € C°((a, b), R")
of the parameter ¢. The p constants of integration are determined by the
initial condition (2.5b).

Explicitly, the J,-map is given by

J(@) =0 +5(6). |
We seek conditions under which Jy(a) has compact support in (a, b).

Notice that since o € C:"(Iyl }, the horizontal component of Jy(a) triv-
ially has compact support in (a, b). Hence it suffices to consider =z, o
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Jy(a), the vertical component of the J ,-map. By construction J, ( o) €
ker_ 9 sections of ker@ ‘vanishing i 1n a neighbourhood of ¢ =a. Thus

we are led to consider the mappmg

Z,: C (Iy R M
given by
(2.6) #(0) = n,(J,(0))|,_p>

y
where I | —p = R® denotes the fiber of the vector bundle I at the point
?ep - Note that J (o) € ker, 9 sectlons of kerZ, w1th compact sup-
port in (a, b}, if and only 1f ,‘7/(0)

We call %” the holonomy map assomated with the 1ntegral curve Y E
7 (I). Tt will be constructed.in a more precise fashion in Appendix B. We
now introduce the following.

Definition. An-integral curve y ¢ 77(I) is said to be regular if its
holonomy map . Z'” is surjective.

As we will show below, the holonomy map plays a crucial role in the
study of TyW(I ). In the case )'f; is a surjective map, we shall give an ex-
plicit description of T},W(I ) . Henceforth, we denote the space of regular
integral curves of the differential system I by Z;(I). ~

At this point we note that although the holonomy map % : C.°(I l) —
R? as constructed above depends on the choice of sphttmg of T, y the
notion of surjectivity of /"?” is independent of this splitting. Indeed, as
we will show below, the rank of ;?’; is well defined. .

This being so, we now fix a splitting of T With respect to this sphttlng,
we seek a basis of sections of I such that %" takes a particularly simple
form. Hence let i g

0 =h ﬂH
be a change of basis of the sections of I, where s = (iz;) is any smooth
extension to U of the map A : R — GL(p, R) defined along the integral
curve y C U by the relation ‘

2.7)  hh=1
With respect to this change of basis, the eorresponding structure equations
become L s : '
A0 Ta A ~ ]

db” = —¢3 NO" + 5¢5m A
where, in view of (2.7), we have y*(<73;) = (.. A basis of sections of [
satisfying this last relation is-called a parallel basis (see Appendix B for
the motivation for this terminology). :
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In this parallel basis, the variational equations (2.5a) take the form

(2.8a) n, =cw, ¢=hc,

while the initial condition (2.5b) becomes
(2.8b) i, (a) = 0.

Henceforth, we shall denote by H the matrix ¢ computed with respect to
a parallel basis, that is, H = hAc. Since the solution of (2.7) is unique up
to a left multiplication by a nonsingular constant matrix, the H-matrix is
likewise defined.

Integrating (2.8), we have that

7 (1) = / ' H(oyw () d.

This is of course just the explicit representation of the (z, o J,)-map.
Hence, with respect to a parallel basis of sections of I, the holonomy map
can be expressed as

= oo A »
%.Co ({a,b),R )Y =R,
where

— b
(2.9) Z(w) = / H(Dyw(t)dx.

Armed with these concepts, we now proceed to consider compactly sup-
ported variations of an integral curve y € Z°(I). The fundamental result
is the following theorem of Bryant [5].

Theorem 3. If v is a regular integral curve of I, then every compactly
supported solution of the variational equation v € ker, 9), is a variational
vector field.

Proof. Without loss of generality, we shall restrict our consideration to
an imbedded regular integral curve y of I. This being so, we now choose
flow-box coordinates so that y is a straight line in A . In a rectangular
neighborhood of y, we can view M"*? as a product manifold

M=N"xP?,
where y ¢ N” and Iyl = TYN". Locally, we think of N” and P’ as

vector spaces R” and R? respectively.

Now, since y is regular, its holonomy map Zj : C° (Iyl ) — is
surjective. Without loss of generality, we may assume that 27; is defined
with respect to a parallel basis. Hence, we can find horizontal vectors g, =

Rp
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ew, €C” (IyL ) so that {)f?\;'(wa)} forms a basis of R . Furthermore, let
g =e,w be the projection of v € ker, Qy to C.° (I)jL ). We then have

(2.10) Zw) =

Now, let us construct a compactly supported deformation of y in N”
depending on the (p + 1) parameters (s, $,),

L(t,s,s,)=7(0)+sw(®)+ Y s,w,(2).

For fixed values of (s, s,), sufficiently small, let F(t , $,$,) bethe unique
lifting of T'(¢,s,s,) to M = N" x P? obtained by solving the system of
ordinary differential equations corresponding to the differential system 7.
In a neighborhood of (s, s,) =0, it can be shown that

(2.11) (t s,8,)=7(t)+sv( t)+Zs'u t)+0(s si),
where v, v, € ker.@y are the liftings of w, w, to M. Note that by
construction
(2.12) I(t,0,0)=y().
We now proceed to consider the mapping IT: R”*' — PP given by
(s, s,) =T(t, 5,5

From equation (2.12), we necessarily have that I1(0, 0) = 0, while from
(2.10) and (2.11) we obtain the relations

oIl o1l ~
50,0 =0, &;(0, 0) = Z(w,).

Applying the implicit function theorem, for s sufficiently small, we are
led to conclude that there exists a smooth curve s, = 7,(s) such that
II(s, 7,(s)) = 0. Differentiating this last equation, we obtain the relation

oIl oIl

— + —1 =0,

as ds, ¢
which, when restricted to (s, s,) = 0, gives 1;(0) = (0. Thus we have
constructed a compactly supported variation I'(z, s) =T(¢, s, 7,(s)) of ¥
satisfying 5L(z, 0) = v(z).

Remarks. 1. Theorem 3 enables us to conclude that
Ty%(I) = ker, 9},.

As will be shown in the next section, this explicit description of the space
of variational vector fields of a regular integral curve of the system [ is the
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key to establishing the validity. of the Grifiiths formalism for variational
problems ar1s1ng from functionals whose domain of definition consists of
regular integral curves of an exterior differential system.

2. Since M is an (n + p)-dimensional manifold and [ is a rank p
sub-bundle, the general integral curve of I depends locally on n func-
tions of oné variable. However, if we identify integrals that differ only
by reparametrization, then the general geometric integral curve depends
locally on n — 1 functions of one variable.

Similarly, the space of compactly supported variational vector fields
of a regular integral curve y also depends upon »n functions of a single
variable. Furthermore, if we identify variational vector fields that differ
by a tangent vector-of y then we again have that TyWR(I ) depends on
n — 1 functions of one variable.

Theorem 3 provides us with a set of sufficient (though not necessary)
conditions under which we can conclude the existence of compactly sup-
ported variations of y € Z°(I). However, to apply the theorem, we need
to establish the regularity of y € Z°(J). We now proceed to provide a
regularity test for any integral curve of 1.

We begin by considering the subspace

F,; = linear span{H(1)¢ V (€ (a, b) EecR'}C R,

where H(?) is a (p x n)-matrix of functions on (a, b). Geometrically, if
one regards the columns of the H-matrix as curves in R?, the subspace
&}; measures the extent to which these curves “fill out” Rp This leads
us to the following.

Definition. The pxn H-matrixis said to be k-linearly full if dimYH =
k. When H is p-linearly full, it is said to be linearly full in R? .

Note that H is k-linearly full if and only if there exist p — k linearly
independent vectors A € (R?)* such that

(2.13) IO H(@) =

and any vector € (RP)* satisfying (2.13) is a linear combination of 2.
~ The crucial observation is the following.
Proposition 4. rank 7/; = dim #;.
Proof. Suppose that dim.#;, < k. This implies that there exist at least

p —k + 1 linearly independent vectors i) € (R?)* such that
H@) =0 Yie(a,b).
Hence rank ;?; < k.
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. Conversely, suppose that dim.#}; = k. Then we can find a set-of k
column vectors
. ny*
H, =H(@)E, & c®),

where ¢, € (a,b) are k distinct ¢-values such that {H,} are linearly
independent vectors in R” . Now, for each x, introduce a “bump func-
tion” gbu(t) centered at t, and set w, (1) = éﬂq&u(t). Taking the limit
as q’) (t) — ( ), where J (1) denotes the “delta function” centered at
t, we have that Z/ ( ) - H,. Hence we conelude that %; has rank
k . q.ed. ‘ '

As an immediate consequence of Proposmon 4, we have

Corollary 5. Anintegral curve y € Z'(I) of arank p differential system
I is regular if and only if, with respect to a parallel basis, its H- matrtx is
linearly full in R? .

Although the above corollary gives necessary and sufficient conditions
under which we can establish the regularity of integral curves of 7 ; a direct
application requires the generally impossible task of explicitly integrating
the system of ordinary differential equations (2.7).

We now present an effective computational test for regularity.

Theorem 6. An integral curve y € 7 (I) is nonregular if and only if
there exists a lifting to Zg = Z,\{0} to be an integral curve of the differ-
ential system :

- I,={vidl,|YveC(TZ))},
where Z,=1C T"M, viewed as a submanifold of T"M , and {, is the
restriction of the canonical 1-form on T*M to Z,.

Proof. Let U be an open subset of M and let y:(a, b) » U be an

integral curve of the differential system /. Choose a coframing {6“, ni}

of U sothat I is generated by {#°} on U with structure equations given
by

do® = —¢ A o + %c;’}r]i At
Locally Z; can be identified with
Z(;'U = U x (]Rp)*

for an open set U C M . This is given by identifying the pair (x,4) €
U x (R”)” with the I-form 4_ 65 € T, M \ {0} . Under this identification,
the canonical 1-form {; on Z takes the form {, =4 o* D1ﬁ“erent1at1ng,
we obtain

dly = (dA, —Agdl) NO™ + LA i’ Ar.
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Taking (ni , 6%, dZ,) as a coframing on Zg , the system f() is generated
by
(0

5/1—& Jdé'o = 0 )
- 8 P
IO= W"dc():dlﬂ*lﬂ¢ﬂ’
03] a i
\ —a—n—k JdCO = j’acikr, .
Thus, integral curves of I, , in addition to being an integral of I, satisfy
(2.14a) Ay=agf?,
(2.14b) Aycp =0.

Now, let y be a nonregular integral curve of /. By Corollary 5, there
exists a constant vector (u,) € (RP)* such that

/zahZc,f =0,

where h; = h;’ fﬂy . Thus 7 lifts to be an integral curve of IAO since 4 () =
/zﬂhf(t) satisfies (2.14).
Conversely, let 7 € W(IAO) and let y be its projection to M. To es-

tablish the nonregularity of y, it suffices to show that every solution of
(2.14a) is of the form

Ao(t) = ughl(0),

where 4, =4,(0) and A =k f? with k5(0) =0; .

To proof this last assertion, we let 4_(f) be any solution of (2.14a) and
let

8,(8) = 4,() — phl ().
Computing, we obtain
$.(0) = 450 f2 ()

with ¢,(0) = 4,(0) — p, = 0. Thus by uniqueness, ¢, () =0. q.ed.

A direct consequence of (2.14) is the following.

Corollary 7. The generic integral curve of a bracket generating differen-
tial system is regular.

However, it is not true that every integral curve of a bracket generat-

ing differential system admits compactly supported variations as we now
llustrate.
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The example we shall consider is a rank 3 system in R’ , with coordi-
nates (x, ¥y, z, p, q), generated by

g' =dy - pdx,
(2.15) I={6*=dp-qdx,
93=dz—q2dx.

This system arises from the differential equation

dz _(d’v\’

& ~(5)
studied by Hilbert [19] in his investigations into the foundations of the
calculus of variations. The Pfaffian system [ was also studied by Cartan
([9], [10]) who showed that it is invariant under the exceptional simple Lie
group G, .

To obtain a coframing of R, we augment {6} with the one-forms

770 =dx and 771 =dgq . The structure équations of I take the form

6" o -2° o 6" 0
dle*l==10o o ola|6]+]| °an" |.
6* 0 0 0 6° 2gn° A !

We can now apply Theorem 6 to deduce that y € Z°(I, dx) is a regular
integral curve if and only if ¢" #0.
If ¢" =0, we have that

(2.16a) y(x)= a,+ax+ %azx2 + %a3x3,
and hence
(2.16b) z(x) = bo + (az)zx + a2a3x2 + %(113)2)63 y

for constants b, a; € R. This gives a 5-parameter family of nonregular
integral curves of I which we shall henceforth refer toas & c 7°(1, dx).
Regarding the set % , we have the following result due to Bryant [5].
Proposition 8. Every integral curve y € % is rigid in the C™-topol-
ogy on 7°(I).
Proof. Along an integral curve y € 77 (I, dx), we have

Y = f(),  p) = £, a) = 1),
2(x) = 2(0) + [0 (f"(0)) do
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for f € C*((a, b), R). Hence, a compact variation of y': {a, b) — R’
must have the form ;

Y(x, ) = (%) +syp(x) +57d(x, s>,
p(x,8)=f(x)+ sy (x) + 5", (x, 5),

qa(x,s) = f"(x) +s9"(x) + b (%, 5)

2, 8) = L)+ [ (£'(0)+59(0) +50, (0, 9) o,

where y(x) = ¢(x,s) = 0 for x € (a, b)\ [a, ] and {(0) = z(0).
Clearly y(x,s), p(x,s), and ¢(x, s) are compact variations of y(x),

p(x), and g(x) respectlvely Furthermore, 1f we demand that z(x,s) be
a compact variation of z(x), that'is,

Z(x’ S) - Z(X) ;,v‘x G (a} b) \[a’ﬂ]:
then
B 4 B,
/ (f"(0) +59"(0) +5°8,,(0, 5))" do = / (f"(0))" do.

This in turn implies that .
ﬂ ! ", ‘
/ f(@W (0)do =0
and that
B, ; S
[ W@ +21 09,400, 00do =0.

Integrating by parts, we obtain
4 " 2 ~(4)
| " @) +2r @), 0)do =0

However, by assumption ¢”(c) = f(4)(a) = 0 and hence y'"(c) =
which in turn implies that (o) = 0. Thus, there are no compactly sup-
ported variations of y—that is, y is rigid.

Remark. The above proof only establishes that y € % is infinites-
imally rigid in Z°({). Robert Bryant and the author have shown that
y € Z is indeed rigid in the c> -topology In fact, it can be shown that
the generic rank 3 system on M? studied by Cartan in [9] always admits
a S-parameter family of rigid integral curves!

Finally, we conclude this section by showing that the notion of regu-
larity of an integral curve y € Z°({) is “geometric” in the sense that it is
independent of the choice of splitting

~ 7l ok
Ty = Iy @S(Iy).
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Indeed we shall show that - - : : . Lo
~ Proposition 9. = The rank of the holonomy map %, C° (I;“ ) — I;
is well defined, independent of the choice of splitting of T,.
Proof. A splitting of T, is 51mp1y a ch01ce of basrs {e,} of I

1=b

equlvalently, a ch01ce of bas1s {n' } of "M /I Hence a change of spht-
tlng is s1mp1y another choice

(2.17) i =n +SB o nizﬁi—Sif)a'-,

where {0°} is a basis of sections of I and Si are smooth functions on
M . From (2.4), we have the structure equatrons _

d. - =—¢ﬂ/\05+2cjkn /\17 ,

where ¢, + ¢;; = 0. Without loss of generality, we can choose {6} to
be a parallel basis, that is, y*(QSZ)_: 0. In this case, the holonomy map is

where we C¥((a,; b), RP). ‘ :
After a change of splitting (2.17), the corresponding holonomy ‘map
takes the form ‘
/ h(t c(r

where A(t) satisfies the equatron '
(2.18) h(t) = h(t)e(1)S(t )‘

We now proceed to show that rank %’ = rank % By Proposrtlon
4, this is equivalent to show1ng that c(¢) 1s k- hnearly full if and only if
h(t)c(t) is k-linearly full for A(z) satisfying (2.18). This follows from the
observation that for each A € (R”)" satisfying Ac(¢) = 0, V t€(a,b),
we can construct a corresponding constant vector' u = Ak~ ( ) € (RPY
satisfying . o
| ph(ec(t)=0 Vite(a,b).

3. The main result

The results of the previous section provide us with a good description
of the space of variational vector fields of an integral curve y. We now
apply these results to partially solve the Griffiths Problem.
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Theorem 10. Let (M, I, ¢) be a smooth variational problem and let
(Z, {0}, £) be the associated variational problem. Then every extremal of
(M, I, ¢) which is a regular integral of I has a unique lifting to be an
extremal of (Z, {0}, ().

Proof. Let U be an open subset of A and let y: (a,b) — U be a
regular integral curve of the differential system I. Choose a coframing
{6%, n'} of U so that I is generated by {6°} on U with structure
equations given by

de =—¢ﬂ/\05+§ :’jn’/\n ,

where c [f ; are functions on U, skew-symmetric in [i/], and ¢;
are one- forms on U which vanish along the integral curve y,

(3.1) Y (45 =

The existence of such a coframing was established in §2. There, it was
shown that such a coframing induced a splitting T, = Iyl 2> s(I; ) along y

1 *
whereby I'” and I are spanned by {e;} and {e,}, dual frame fields to

{n'} and {6°}. With respect to this splitting, every section v € C o"(Ty)
can be expressed as .
v=ew +s(e)u”

for some smooth functions w’ and #® on y. If in addition v € kergy ,
then the corresponding variational equations take the form

(3.2) i = clw'.

Now, since y is a regular integral curve, it follows from Theorem 2
that v € ker, 9 is a compactly supported variational vector field of .
Hence, by (1. 5) the extremal condition can be expressed as

b
(3.3) [ vide=0 voecker,,

Here ¢ is the Lagrangian one-form on U associated with the variational
problem, and so

(3.4) dop=A,n' NO*+ 1B ' Ay’ mod {6% A 6"}

for some smooth functions 4, and By, on U. (3.3) now evaluates to
give

b .
/ (4,,u" + B,w*)n' dt = 0.
a
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Integrating by parts, and taking into account the variational equations
(3.2), we get

(3.5) f A ut @ dt=0,

where A, = 8Z—I[Aiani]cz - Bikni and 8;1 is the antiderivative operator
defined by

8 '[o] = f ‘ot dr.

Note that (3.5) contains no boundary terms because v € ker, gy .
Now, from the form of (3.2), the corresponding holonomy condition
Z’;(w) =0 is given by

(3.6) f ’ (k1) dt = 0.

Thus by Lemma C.1, we have that the extremals of the variational problem
(M, I, ¢) satisfy the equations

(3.7) 814, n'\c; — B,n' =k ¢}

for some constants k . These are the Euler-Lagrange equations of the
variational problem (M, I, ¢).

To complete the proof, it suffices to show that every integral of (3.7)
lifts to be an integral curve of the Euler-Lagrange system on Z .

On Z = M x R?, we have the canonical one-form ¢ = ¢ + ,109“ .
Differentiating, we obtain
Al = (dh, + A — A8ty 6% + LAl + B A’ mod {6 A 67}
Taking (ni ,0%,dA) asacoframing on Z , the Euler-Lagrange system on
Z 1is generated by

9

5r1dl=0",
~ o ;
(3.8) T= soaddl=di, + 4,1 -4y,
s} oy i
— 1dl = (B, + 2 cy)n -
\8771( ( ik @ k)’7

To construct a lifting of an integral curve y of the Euler-Lagrange equa-
tions (3.7) we merely let

(3.9) A, =k -84, n'.
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If 7 is the lifted curve, then % is an integral of 6° by constructlon
Similarly, in view of (3.1) and (3.9) we have that

P (dd, + Ay — Agdh) =0
while
l (B + AL ] =
follows from equation (3.7) and relation (3. 9)

Finally, if $ and § are two different liftings of ¥y on M to Z, then
the differences of their Euler-Lagrange equations on A give

(k,—k)c; =0.

However since y is regular (cp) is linearly full in R” and so k ka =0.
Hence the lifting is unique.

Remarks. 1. The above theorem establishes the validity of the Griffiths
formalism for variational problems given by functionals whose domain of
definition consists of regular integrals of an exterior differential system
I. However 1ntegra1 curves of a drfferentral system need not always be
regular. In fact, it may happen that the system I admits no regular curves,
which happens for differential systems with a nontrivial derived system. In
such cases, however, we may still be able to apply the Griffiths formalism
to study the associated variational problem by restricting to the leaves of
the foliation generated by the derived system of 7. .

For a general differential system, the geometry (and topology) of the
space of solutions 7( ) of I could be very complicated. For instance,
it could happen that some subsets of (1), 1solated or otherwise, fail to
be regular, as is the case for the 5-parameter famrly F of rigid mtegral
curves of the Hilbert system (2.15) studied in the previous section. For
such nonregular curves, the Griffiths criterion is not universally valid—that
is, not all nonregular extremals are obtainable via the Griffiths formalism.
This follows from the fact that the exceptional integral curves y € %,
being rigid, are trivially stationary points of any variational functional
® : 7°(I) — R whose domain of definition consists of integral curves of
the Hilbert system. However, an easy computation shows that these rigid
curves are generally not solutions of the associated Euler-Lagrange system.

The existence of these nonregular extremals provide counterexamples
to the often stated assertion in sub-Riemannian geometry that “every min-
imizing curve satisfies the geodesic equations” (see, for instance, [22]).

2. As the readers are no doubt aware, closely related to the Griffiths
formalism is the classical Lagrange multiplier rule for finding extremals of
variational problems. In [3], Bliss showed that for the classical Lagrange
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problem on J!(R, R"), viewed as a fiber bundle over R x R” ,-with ad-
missible variations being curves in R x R” joining two fixed points, every
“normal” extremal of the variational problem is obtainable via the La-
grange multiplier rule. '

For this classical case, it is not ‘hard to establish that the condmon of
“normality” of an mtegral curve coincides w1th the notion of regularlty
1ntroduced in §2. Thus, as an immediate consequence of Theorem 10, we

have the followmg strengthemng of the classical result.

Corollary 11.  Every regular extremal of the classical Lagrange problem
is an integral curve of the associated Euler- Lagrange system. '

To conclude this section, we like to emphasize that' irrespective of
whether Griffiths’ criterion is universally valid, from the discussions given
in §2, we have.that a “generic” integral curve of a Pfaffian differential
system (those with a trivial derived system) will be regular. Hence, by
restricting our consideration to the set of regular curves, we can study the
associated variational problem via the Griffiths formalism.

- 4. Examples

In this section, we shall investigate a number of geometric variational
problems. These can be described in a umﬁed manner as seekmg to m1n1-
mize the arclength functional

(4.1) ' o) = /ds

subject to some dlﬁ‘erentlal geometrlc constramts ‘

"The first is a generahzed Delaunay problem Wthh asks for the short-
est curve y in 53 , a three-dlmenswnal space form satlsfymg the non-~
holonomic constraint
(4.2a) K=K, or T=1,,
where k¥ and 7 denote the curvature and torsion of y respectively. This
problem was much studied classically (see, for instance, Carathéodory [8,
p. 373]) for a detailed discussion of curves in Euclidean 3-space.

The second and third variational problems we- shall .consider are the
isoperimetric problems of Pappus and Poincaré respectively. These consist
of finding the curve y of shortest length among all smooth closed curves
bounding-a connected region Q C ‘ZZ of a Riemannian surface, satisfying
the integral constraint :

(4.2b) | / dA = 4,
Q



576 LUCAS HSU

in the case of the Pappus problem, and

(4.2¢) / KdA=K,
Q

in the case of the Poincaré problem. Here dA denotes the area form of
the surface ¥ while X is the corresponding curvature.

1. The Delaunay problem. We approach the problem via the method
of moving frames. Hence let (x;e¢;), X € 3’ , be an orthonormal frame of
¥*, a three-dimensional space form with constant sectional curvature c.
Denote by & (23) the bundle of orthonormal frames of £*. On & (23)
we have the equations

1 2 3
0 —cw -—cw -cw

o' 0 a); a);
(4.33) d(x ’ el » e2 ? 63) = (X ’ el ’ 62 ? e3) a)z a)? 0 a)§ ’
»’ a)‘;' a)g 0

where {', a)j.} is a coframing of & (X°) with a)j. + a){ = 0. Here {©'}
is an orthonormal coframe dual to {e;,} while {a);.} are the connection
forms on .97():3) .

Taking exterior derivatives of (4.3a), it follows that the structure equa-
tions of Cartan are given by

(4.3b) do' = —o; N, dw; = —w; A a)ic +co' AN’
By scaling, the value of the constant ¢ can be taken to be 1,0, or —1
depending on whether the space form = is the 3-sphere s? , euclidean
3-space E’ , or hyperbolic 3-space H.

Now, let x : R — X° be an immersed curve and let y : R —» F (23) be
the framing of x(¢) given by

Y1) = (x(1), €,(2), &,(2), &;(1)).

We call such a framed curve a Frénet curve if, in addition, it is an integral
curve of the differential system generated by {a)2 , ® , a)f'} . Hence, for a
Frenet curve y, we have that

d(x(2), e (1), (1), e5(t))
0 -ce' 0 0
Y @ 0 Y, O

= (X(t) > €] (t) » ez(t) » e}(t)) 0 y*a)z 0 * 2

1

0 0 yw 0
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Geometrically, this corresponds to the property that e,(?), e,(¢), and e;(z)
are respectively the unit tangent, normal, and binormal vectors forming an
oriented orthonormal frame of Tx(t)}:3 . Hence (e,(1), e,(t), e5(t)) is the
classical Frénet frame on the space form 3,

In what follows, we parametrize y by arclength s. For Frénet curves,
we define the curvature x(s) and torsion t(s) by

Y @' = k(s)ds, y @) = (s)ds.

o We first consider curves y C 33 of constant curvature K, . Following

Griffiths [17], we set up the differential system /I on & (}:3) x R, where
R has coordinate 7. The generators of I are
Blzwz, 02=a)3, 03=a)1,

4 2 1 5 3 1
0 =w -k, =0,-10,

3

for some constant x,. To complete the coframing on F (}:3) xR, we add
the one-forms

"’ =w', n' =d‘[—l€0‘[01—-1€003.

From (4.3), the structure equations of / can be shown to take the form

9! 0 ——1770 0 ——770 0 o' 0
02 TUO 0 _no 0 0 02 0
d BZ =~ 0 , en® 0 , o’ ——JchD A 0: + ?) .
8 (c+ &%) 0 -t 0 0
5 01 U 5 0. .t
6 0 0 0 0 0 6 nAn

where = denotes congruence modulo {6% A 6%} .
Applying Theorem 6, one can easily verify that y € Z°(I,ds) is a
regular integral of I if and only if

—2t8+ 3(1) + 4t (c+ Ko —T) £ 0.

For these regular integrals, we can apply the Griffiths formalism to study
the associated variational problem.

The Lagrangian one-form is ¢ = ?70 and hence, on Z = [F (23) x R] x
R’ , the canonical one-form takes the form

(=n"+ A,6%.
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We take"(n"" 9%, dA) as"a'coframe on: Z and compute the Cartan system
& (d{) by contracting d{’ with- {0/04,;0 100%,0 /677 } respectlvely
Thus the Euler-Lagrange system on Z is generated by

el

'8/1 1dl=40"= =0,
6—59— 1dg = —a’/t - [xo . A+ xé)]n‘) o,
e %mc_ | (/11—/1.(,‘)770’:-0,
(:4-“4)' B—Z—JdC = (/1 +4; 1)77 =0,
(%Jdcéi—d“ (4 ,11)17 -0
g%ngC:—dayfzy%n =0,
‘ --5% 1dl= A’ =0
Subject to the 1ndependence condltlon 7" (n ) 7é 0, these ecjua’uons give
(4.5) | 15 =0, Ay =0.

Slnce we are con51der1ng regular curves, KO 76 0 we get /1 =0, and hence
(4.6) : Ay +Aa=0.
The remainihg equatiOns'n_ow take the form

' "(a) : il' = —[ko - Xzi‘t — A c+ Ké)] ,

4.7) (®) Ay=-a,7, .
- () dy=—dp. . -
(4.6) together with (b), (c) in (4.7) gives ~
2l
A, T

Th1s y1e1ds the ﬁrst 1ntegral :

48 - /lr—cle]R
on solutions to the Euler-Lagrange system We note that the curve y cx?
is uniquely determined, up to rigid motions, by knowing the constant ¢,
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and the function 4,(s)—this is because we assume k,, is a known constant
2 R
and 1(s) = ¢, /A,(s).
The remaining equations give
- 2 2,-3
Ay =Ky — (c»+ Ko)Aq + 1A,
This equation has a first integral given by
52 252 2,-2
(4.9) Ay —[2kphy — (¢ + Ky)Ay — A, " 1=¢;,

for some constant ¢, .. Hence, the phase portrait of the solution curves
to the Euler-Lagrange system associated with the functional (4.1) with
constant x, is given in the (4,, A 4)-blane by a three-parameter family of
algebraic curves. For general values of ¢, ¢,, and k,, these are elliptic
curves. _

¢ Let us now consider curves y C 3 of constant torsion t,,. As before,

we set up the differential system I on % (Z ) x R with generators

1 2 3 3
f =w", 0=w, G:wl,

4 2 1 5 3 1

0 =w-kw , §=0,-10,
where TO 1S now a fixed constant. Furthermore, to complete the coframmg
on & (X ) , we add the one-forms

n° —o', ' =dr-(ct+i)8 1,0

A short calculation shows that the structure equations of / can be written
as

6! 0 -tn° 0 -7 0 6! 0
6 w0 -n® 0 0 6’ 0
dle*i=-| o o’ 0 T k| A e+ 0
6* 0 o 0 0 0 o*| | nn'
0’ ki 0 kn® 0 - 0 6° 0

Applying Theorem 6, we are led to conclude that y € Z°(7, ds) is regular
if and only if ro(c—ré) # 0 and x # 0. Hence, for these regular curves, we
can again apply the Griffiths formalism to study the associated variational
probiem.

As before, the Lagrangian one-form for the variational problem is ¢ =
770 and hence, on Z = [F (23 ) x R} x R’, the canonical one-form is

(= 710 +2,6°
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Taking (ni , 0%, di,) as a coframe on Z, the Euler-Lagrange system on
Z is generated by

8 «
_—alaJdC—e =0,

0 1 0
ﬁJdC=—dl,—(K—lzro— skT)n =0,

d
g2t ==y~ (7o - aon’ =0,

(4.10) S5 1L = ~diy — (1~ g’ = 0,
0 0
AL = —di, = (3, ~ 2y’ = 0,
5‘90—5 1d¢ = —dag— 2xn” =0,

0 0
—leC = —147] = 0.

on
Along solution curves, (4.10) gives
(4.11) Ay=0, Ay =247, =0
and hence, combining the second and fburth equations of (4.10), we get
(4.12) K = 27)4,.

The remaining equations of (4.10) are
; 2
Ay = —A4(T5 —€),
(4.13) Ay = —2y(1 = 27,4s),
25 = —2754,4,.
At this stage, we find it convenient to introduce the following change of

variables:
By =Ry, My =2TpAy, gy =1-2Tyds.

In terms of these, system (4.13) becomes

(a) /11 = _(1(2) - C).uz/zTo >
(4.14) (b) /12 = —2‘[0“1/13 ,

(€©) g = 2gu -

Combining () and (c¢) in (4.14), we obtain the first integral given by

2 2 2
(4.15) e+ s =cf.
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Now, letting u, = c¢,cosf and p, = c;sinf, and differentiating, we
obtain the following identities:

ﬂz[é - 270/‘1] =0, /‘3[9 - 2T0ﬂ1] = 0.
Hence, there are two cases to consider:
I: u, =u;=0. In this case, we have

A =0, A=, A4,=0, A4,=0, i=Q1) ",
where A is an arbitrary constant. From (4.12) we have that the curvature
satisfies k¥ = 247, . For this class of solutions, ¥ and 7, are both nonzero
constants, and hence the extremal curves are helices.

Il: u, # 0 or py # 0. In this case, we have 6 = 2r,u, which, when
differentiated, gives

6= —(rg - ¢)c, cosb.
This equation has a first integral given by
(4.16) 6" +2(t} — ¢)e,sin 6 = c,.
For general values of the constants ¢, ¢,, and 7, the phase portraits in
the (8, §)-plane are transcendental curves.

Remark. The above analyses enable us to conclude that the generalized
Delaunay problem is completely integrable in the sense of being able to de-
termine the invariants of the problem up to a single quadrature. However,
there is much more to be done before we can deduce the global qualita-
tive behavior of the resulting extremals y C 2. In particular, it is not
known whether simple closed extremal curves exist in either of the above
two cases.

2. The Pappus problem. Let (X, dsz) be a Riemannian surface and let
F (X) be the associated orthonormal frame bundle with the usual cofram-
ing {cu1 , w? , 2} . The Cartan structure equations take the form

dwl=p/\w2, dw2=—p/\cu1, dpz—KwI/\wz,

where K is the Gauss curvature of the surface X.

Let Q be a connected region in ¥ bounded by a smooth closed curve
y . For such a region, it is not too difficult to show that the area constraint
(4.2b) is equivalent to the integral constraint

(4.2b") /a:A“
7

where « is a one-form on ¥ (X) satisfying da = o' Aw’ and A, =A4,+C
is some prescribed constant. Here 4, denotes the area of the region
while C is a universal constant depending on the homotopy class of ».
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-Hence the Pappus problem is equivalent to finding critical values of the
arclength functional (4.1) subject to the integral constraint (4.2b") .
Now, curves y C & (Z) satisfying the constraint (4.2b") can easily be
shown to be integrals of the system I on % (X) x R with generators

01=w2, 02=p—xwl, 03=-dz._:—a.

To complete the coframing on % (X) x Rz_, we add the one-forms

" =w, n'=dr—(K+1x)0".

The structure equations of I are given by ‘
- [e' 0 -n° 01 [6! 0 . \
dle*|l=-{0 0 o|al6*|+|n°An'| mod {6°A6").
6* 2 0 0 6| 0
Applying Theorem 6, it is easy to verify that y € 77°(I, ds) is always regu-
lar, and hence we can apply the Griffiths formalism to study the associated

variational problem.
As before, on Z 2 [# (Z) X Rz] x R, the canonical one-form is

t=n"+ 2,0%

Computing the Cartan system % (d{), we have that the Euler-Lagrange
system on Z is generated by -

G, «
EJdC—H =0,

0 0
5;Jd§=—d/ll—(x+/l3)n =0,
d 0 _
(4.17) ﬁJdC=—dlz—lln =0,
' 0
ﬁJdé’:—d}%:O,

0 0
51—1 Jdc = —}»27] = 0.

Subject to the independence condition y” (no) # 0, these equations give

(4.18) A =24,=0 and x =4, = constant.

Remark. In the special case of a planar surface, it is known classically
that extremals of the Pappus functional are circles. From (4.18), one
observes that extremals of the Pappus functional on an arbitrary surface X
can also be simply characterized as curves of constant curvature. However,



CALCULUS OF VARIATIONS VIA THE GRIFFITHS FORMALISM 583

it has not been established:that such extremal curves always exist. An
interesting problem is to find differential geometric conditions on X wunder
which existence of closed curves of constant geodesic curvature can be
established. ' :

Of particular interest is the study of the gradient of the arclength func-
tional (4.1) subject to the area-constraint (4.2b). Using this technique,
Grayson [16] was able to establish the existence of a closed geodesic on
Riemannian surfaces. Similar results should hold for curves of constant
curvature. See Gage [15] for the special case of planar curves.

3. The Poincaré problem. As with the previous problem, let (Z, dsz)
be a Riemannian surface with structure equations

do' = pra’, dco2=—p/\co1, dp=-Ko' Ao

If 'we let Q. be the simply connected region in' £ bounded by a smooth
closed curve y, then by the Gauss-Bonnet theorem, we have

(4.19) ' '/KdA+/xds=2n,
Q ¥
in which case the integral constraint (4.2¢) becomes
(4.2¢') ~ / xkds =K,
, : - Y .

for some constant K, =27 — K|,
Now curves y C & (Z) satisfying the constraint (4.2c’) are integrals of
the system I on & (X) x R® with generators
6! =a)2, 02=p—1ca)1, 6’ =dz - Ko
We complete the coframing on % (X) x R? by adding the one-forms
n0=a)l, nlzd;c—(K+;c2)61.

The structure equations of I are given by

6 o -n°0 6 0 |
dle*|=-] o 0 o|Aale*|+|n°An"| mod {6 A6%).
6’ -kn° 0 o 6> 7° Al

Applying Theorem 6, we conclude that y € Z°(I, ds) is regular if and
only if K ly # 0. Hence, by restricting to nonflat portions of the surface

3., we can apply the Griffiths formalism to study the associated variational
problem. :
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Proceeding as before, we find that the Euler-Lagrange system on Z &
[ZF(Z) x R?] x R® is generated by

a a-—
BTQ-JdC=9 —O,
9 di A K’ =0
891Jd€=_ 1~ (e +A,K)n =0,
15 0

(420) BFJdC=—-d/12—/11ﬂ =0,

0
ﬁJdC = —d/l:,) = O,

9] 0
5’1—1JdC =—(4, +4;)n =0.

Subject to the independence condition y*(no) # 0, these generate the
relations

(4.21) A, =0, A, = —4, = A = constant,
and
(4.22) K = AK.

In this general setting, not much is known about the existence of closed
extremals for this isoperimetric problem. However, in the special case of
closed curves y on a convex surface X that bisect the integral curvature
of X

(4.23) | Kda=om,
Q

extremals of the above isoperimetric problem are necessarily geodesics
[21). This result follows from the Gauss-Bonnet formula (4.19), taking
into account equation (4.22) and the constraint (4.23), which gives

A/de:().
7

Since K > 0 by hypothesis, we necessarily have 4 = 0 which then implies
from equation (4.22) that k¥ = 0. Thus y is a geodesic on £. The
converse follows trivially from the Gauss-Bonnet formula (4.19).
Remark. The problem of finding closed geodesics on a convex sur-
face X using techniques from the calculus of variations was initiated by
Poincaré in [21]. There, it was suggested that solutions could be found
by solving the above isoperimetric problem. Recently, this approach of
finding closed geodesics has been reexamined by a number of authors.
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In particular, Berger and Bombieri [2] and Allard [1], using the so-called
direct methods in the calculus of variations, were able to establish the ex-
istence of a simple closed geodesic on X. We refer the reader to [13], [16],
and [20] for more sophisticated methods of finding closed geodesics on X.

Appendix A. Calculus of variations and closed extremals

For some variational problems (M, I, ¢), for instance the isoperimet-
ric problems of Pappus and Poincaré studied in §4, it is natural to restrict
the domain of definition of the variational functional

() =/y¢>

to the class of periodic or closed integral curves of the differential system
I, which we denote by

7N ={y:S" — M| y(I)=0}.

As before, we make Z7°(I) into a topological space by endowing it with
the C™-topology. Here, we are making the a priori assumption that the
system [ admits closed integral curves. It is not clear to what extent
this assumption is justified. To the best of this author’s knowledge, there
is no existence theorem for closed integral curves of a “general” exterior
differential system. However, for the special cases of the contact system
and the geometric systems considered in §4, it is known that closed integral
curves exist in abundance.

Assuming that Z°°(I) is nonempty, our objective now is to describe the
critical points of the functional ® : 7”°(I) — R . We seek conditions on the
closed integral curves under which we may apply the Griffiths formalism
to study the extremals of the variational problem. As in §2, we are led to
consider 7,7 “(I)—the space of variational vector fields to y € 77°(1)—
and the variational equations of y,

D, (v) =0,

b
where Z,: C™(T,) — QI(I;) is the variational operator.

At this stage we notice that since S' is compact, every variation of
y € Z°°(I) trivially has compact support. However, it is not true that
every v € ker@r is a variational vector field. For instance, take I to be
the geodesic equations on a “barbell” surface and let y, be the lone closed
geodesic in the neck of the surface. The variational equations in this case
are just the Jacobi equations. However, v € kergyo cannot be realized by
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a variation of y_ through closed geodesrcs since there are no other closed
geodesics in a neighborhood of - ‘<

Hence, as before, we need to 1ntroduce the notion: of regularrty for
closed integral curves of a differential system -I.. . In what follows, we ‘say
that an integral curve y € Z°°(I) is regular if there exists an open interval
(a,b) ¢ S' such that the holonomy map of 7 restricted to (a, b) i
surjective. 'An application of Theorem' 3 then allow us to’conclude that
there exist variations of -y € Z7°(I) ‘through closed integral curves of* I,
in which case Theorem 10 .can be applied to study closed extremals of the
variational problem (M .1, ¢)... SR

However, the regularity of closed 1ntegra1 curves of I is not suﬂic1ent
to guarantee the existence of closed extremals of the variational problem
(M I, d)) It is a problem of fundamental 1mportance 1o establish neces-
sary and sufficient conditions on the manifold A, the drfferentral system
I, and the functional ® under which one can conclude such an existence.

' Appendlx B. The holonomy map .

In §2 we constructed natural vector bundles on an 1ntegra1 curve y
(a, b) » M of a sub-bundle I C T"M , with mappings

, 01 5T, 231 -0
In addltron we constructed the var1at10na1 operator
Z,: :CX(T,) — (1 )
which satisfies - . ¢ -
_ I (fv)=dfen,(v)+ fZ,(v),
where f is a smooth function on (a, b). Furthermore, we chose a split-
ting of Ty given by s : I; - Ty satisfying 7, o5 = 1,
~ L *
T,= I eas(Iy).
This splitting allows us.to define a connection on: I; s
Ve - Q).
given by , ’ , _
v <u> Z,(s(v)).
Clearly
vV (fr) df®t/+st(u)-
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and so V® is a connection on I; , depending on the splitting s.
At this stage we note that I; is a trivial vector bundle of rank p,

* ¥4
I, =(a,b)xR",

and so V° is a globally flat connection on I; . Hence there exists a parallel

frame field on (a, b) with respect to which V® is the trivial connection
on I; ‘given by a differential of maps.
Let us now introduce the complex &° = & S(I;‘ ) given by

0T ol —o.

? ?

This complex is not exact, and one can easily show that H l(é” Y= RP.
Hence we obtain the exact sequence

0 C2(1y) Loy & HY(E - 0,

where 7’ denotes the map to the cohomology of &°.
This then leads us to the following definition of the holonomy map:

#CO(L) — H' (&)
with #°(0) = —n°(Z,(0)). It is now easy to show that #” coincides
with the holonomy map constructed in §2.

Appendix C. The du Bois-Reymond lemma

In this appendix we state and prove a result that is needed in the deriva-
tion of the Euler-Lagrange equations given in §3.

Lemma C.1. Let H(t) be a (p x n)-matrix of smooth functions with
the property that the map

X :Cl((a,b),R") - R
given by
A (w) = /b H(t)w(t)dr
a
is surjective. Furthermore, let *A(t) be a smooth R"-valued function satis-
Jying ,
/a A(Dw(t)dt =0

Jor every w € C°((a, b), R") satisfying #(w) = 0. Then A(t) is nec-
essarily of the form A(t) = kH(t) for some constant vector 'k € R” .
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Proof. We shall use essentially the same idea as in the proof of the
classical du Bois-Reymond lemma. Hence we construct the vector-valued
function

£,(1) = " (D)(A() - kH (1)),
where ‘k € (R?)* is as yet an undetermined constant vector, and ¢ is
any nonzero real-valued function with support in (a2, b). Furthermore,

we demand that s
/ H(7)'{ (1)dt =0,
a
which expands to give

(C.1) /H 063 (7) a’f—[/ H(7) H(1)$(z) de } k=0,

The assumption that /# . is a surjective map implies that the (p x p)-matrix

[

is of full rank. Hence (C.1) is a system of linear algebraic equatlons Wthh
can be solved uniquely for .

We now take for w(r) the R"-valued function tCO(r) with k as deter-
mined above. In terms of these, we have that

b
/ [A(r) — kH(D)]'[AG) — kH(2)]¢°(7) dx

b b
=/ A(r)w(t)dr—k/ H(t)w(r)dt

The right side of this last relation is zero by hypothesis while the left side
is everywhere > (. Hence, we necessarily have

A(t) - kH(t) = 0.
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